The Evolution of Human Skin Color Part I – Skin Cancer - Annie

The Evolution of Human Skin Color Part I – Skin Cancer - Annie free pdf ebook was written by NCCSTS on May 19, 2011 consist of 13 page(s). The pdf file is provided by sciencecases.lib.buffalo.edu and available on pdfpedia since February 29, 2012.

national center for case study teaching in science page 1 “th e evolution of human skin color” by annie prud’homme-généreux by annie prud’homme-généreux...

x
send send what is readshare?


Thank you for helping us grow by simply clicking on facebook like and google +1 button below ^^

The Evolution of Human Skin Color Part I – Skin Cancer - Annie pdf




Read
: 688
Download
: 0
Uploaded
: February 29, 2012
Category
Author
: NCCSTS
Total Page(s)
: 13
The Evolution of Human Skin Color Part I – Skin Cancer - Annie  - page 1
NATIONAL CENTER FOR CASE STUDY TEACHING IN SCIENCE The Evolution of Human Skin Color by Annie Prud’homme-Généreux Life Sciences Quest University, Canada Part I – Skin Cancer “Stop it!” called Tatiana, playfully. Her boyfriend, Zach, was inspecting her skin very carefully. “Look,” he answered her, his voice taking on a more serious tone. “Today a woman walked into the clinic for her annual physical. Everything about her seemed fine. She leads a balanced lifestyle, she eats well, she exercises: she’s healthy! But as she was about to leave, I noticed a mole on her arm. It had many of the warning signs of skin cancer. So, I removed the mole. This woman now has to wait for the lab results to see if it was cancerous. If it is, maybe we caught it early enough to treat it, and maybe not. Either way, her life is changed. I just want to make sure you don’t have any suspicious moles, okay?” Tatiana relented and allowed Zach to examine her skin. She asked: “Do only white people get skin cancer?” “No, people of all skin tone can get skin cancer, but it does occur more frequently in Caucasians.” Questions 1. What are the causes of skin cancer? 2. Why are Caucasians more at risk of skin cancer than other populations? 3. At what age does skin cancer typically occur? Is the incidence of skin cancer greater in youth or old age? “The Evolution of Human Skin Color” by Annie Prud’homme-Généreux Page 1
You're reading the first 10 out of 13 pages of this docs, please download or login to readmore.
The Evolution of Human Skin Color Part I – Skin Cancer - Annie  - page 2
NATIONAL CENTER FOR CASE STUDY TEACHING IN SCIENCE Part II – Skin Pigmentation and UV Light Why are human populations differently pigmented? What caused the evolution of an array of different skin colors? Humans Were Initially Lightly Pigmented About seven million years ago, humans and chimpanzees shared a common ancestor. Since that time, the two species have evolved independently from one another. It is generally assumed that chimpanzees changed less over that time period than humans—because they have remained in their original environment. Chimpanzees are therefore often used as a surrogate to make inferences about the physical and behavioral attributes of our common ancestors. The skin of chimps is light and covered with hair. From this observation, it has been inferred that our earliest ancestor was also probably light-skinned and covered with hair. Since humans and chimps diverged, humans left the protection of trees and adapted to a new environment (the open savannah). This change in habitat required several adaptations. Life on the savannah provided little shade and so little protection from the sun, and required a more active lifestyle (i.e., hunting as opposed to picking fruits). It is also hypothesized that the social interactions and strategizing required for successful hunting favored the development of a large brain, which consumed a lot of energy and generated heat. An increased number of sweat glands and loss of body hair evolved to dissipate heat. This created a new problem, as the light skin became exposed and vulnerable to the sun’s damaging ultraviolet (UV) radiation. Melanin: Natural Sunscreen UV light is harmful to living organisms because it causes changes (i.e., mutations) in the DNA sequence. Skin cells that produced a pigment called melanin were advantaged because melanin is a natural sunscreen; it absorbs the energy of UV light and shields cells from the radiation’s harmful effects. Such cells were favored in evolution and now all human skin cells can produce this pigment. People vary in their skin tone due to differences in the distribution, quantity, size, and type of melanin found in their skin cells. As you might suspect, people with dark skin tend to have larger and more numerous melanin-containing particles in their skin. This provides protection from the sun’s UV rays. Many genes are known to affect the production of melanin and cause skin color variation in humans. While skin color is an inherited characteristic, the fact that many genes code for this trait explains why children do not always exactly match their parents’ skin tone. Tanning is the process of producing more melanin in the skin in response to ultraviolet exposure, and does not require a change in the genetic code (if a parent gets a tan, the offspring will not be more pigmented). Distribution of UV Light across the Globe The following image (Figure 1) represents a map of the world on which the UV-light Index has been superimposed. The latitudes are shown on the left (latitude helps define a location on Earth, specifically how far north or south of the equator a site is). Questions 4. Does the amount of UV light reaching the Earth vary in a predictable manner? If so, describe the pattern you observe. 5. What latitude receives the greatest amount of UV light? The least? 6. Based on these data, where might you expect to find the most lightly pigmented and most darkly pigmented people on the planet? Be as specific as you can. 7. Provide a rationale to your answer above (i.e., why did you think that more darkly pigmented people would be found in those areas)? “The Evolution of Human Skin Color” by Annie Prud’homme-Généreux Page 2
The Evolution of Human Skin Color Part I – Skin Cancer - Annie  - page 3
NATIONAL CENTER FOR CASE STUDY TEACHING IN SCIENCE Figure 1. Global UV Index Forecast. Source: Figure obtained from the National Oceanic and Atmospheric Administration. Graph retrieved 18 October 2009 from http://www.cpc. ncep.noaa.gov/products/stratosphere/uv_index/gif_files/uvi_world_f1.gif. This U.S. Government material is not subject to copyright protection within the United States. “The Evolution of Human Skin Color” by Annie Prud’homme-Généreux Page 3
The Evolution of Human Skin Color Part I – Skin Cancer - Annie  - page 4
NATIONAL CENTER FOR CASE STUDY TEACHING IN SCIENCE Part III – Distribution of Skin Tones across the Globe Let’s examine whether our predictions were correct. Figure 2 shows the relationship between latitude and the average skin reflectance of populations located throughout the world. Skin reflectance is a measure of pigmentation. The more a skin reflects light, the lighter it is in tone. Figure 2. Relationship of skin reflectance to latitude. Source: Panel B of Figure 2 in Barsh (2003). Graph originally captioned as “Summary of 102 skin reflectance samples for males as a function of latitude, redrawn from Relethford (1997).” © 2003 Public Library of Science. This is an open-access article distributed under the terms of the Public Library of Science Open-Access License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Questions 8. Interpret this graph and the trend it describes. a. Is skin reflectance randomly distributed throughout the globe? If not, how would you describe the pattern? b. Restate your findings in terms of skin color and UV light (instead of skin reflectance and latitude). c. How closely do these findings match the predictions of your hypothesis (Question 6)? d. Some populations have skin colors that are darker or lighter than predicted based on their location (their data point falls somewhere outside of the line shown in Figure 2). What might explain the skin color of these exceptional populations? Propose a few hypotheses. 9. Hypothesize why different skin colors have evolved. Based on what you know, what factor is most likely to exert a selective pressure on skin color? “The Evolution of Human Skin Color” by Annie Prud’homme-Généreux Page 4
The Evolution of Human Skin Color Part I – Skin Cancer - Annie  - page 5
NATIONAL CENTER FOR CASE STUDY TEACHING IN SCIENCE Part IV – Natural Selection and Evolution of Skin Color Based on the information provided so far, it seems reasonable to hypothesize that darker skin evolved to protect against the harmful effects of UV light. In particular, individuals who lacked optimal pigmentation for tropical latitudes had a greater risk of skin cancer and death. Until fairly recently, this was the leading hypothesis about the evolution of skin color. However, there is a problem with this hypothesis. Let’s see if you can find it. Here is some basic information on evolution by natural selection. Evolution is a change in the gene pool of a population of organisms from generation to generation. Natural selection is but one of several mechanisms by which evolution can take place. Through natural selection, populations evolve and become adapted to their specific environment. Natural selection will occur if the following three conditions are present: Variation: The organisms in the population vary with regard to a trait. Heredity: Variation in the trait has a genetic component transmissible to offspring. Selective Pressure & Differential Reproductive Success: Some traits increase the odds of surviving to reproductive age and successfully producing and rearing offspring in a given environment. Such traits are more adaptive. Those organisms having the better adapted trait leave more offspring behind—they are “naturally selected.” In the next generation, this adaptive (and inherited) trait will increase in frequency and will be represented in a greater proportion of the population. At this point, the genetic makeup of the population is different from that of the starting population: the population has evolved. Evolution is really a “number’s game”: the organisms that reproduce the most “win” because their traits will be disproportionally represented in the next generation. Note also that individuals do not evolve. They either breed more effectively or less effectively, depending on already existing differences in their traits. Only populations evolve or change over time. Questions 10. Review your answer to Question 3. Keeping your answer in mind, how strong a selective pressure do you expect skin cancer (UV-induced mutations) to exert on reproductive success? 11. Based on this information, does your hypothesis about the evolution of skin color (Question 9) seem likely? Why or why not? How does skin color meet, or fail to meet, the three requirements of natural selection outlined above? “The Evolution of Human Skin Color” by Annie Prud’homme-Généreux Page 5
The Evolution of Human Skin Color Part I – Skin Cancer - Annie  - page 6
NATIONAL CENTER FOR CASE STUDY TEACHING IN SCIENCE Part V – Folate: A Different Way of Looking at It Since skin cancer tends to occur after age 50, it has little impact on reproductive success. Consequently, skin cancer probably exerted little pressure on the evolution of skin color. Some other factor must explain the range in pigmentation that is observed in the human population. For years, this fact was overlooked by the scientific community, and the consensus was that dark skin had evolved as protection against skin cancer. In 1991, the anthropologist Nina Jablonski was skimming though scientific journals when she came upon a 1978 paper by Branda and Eaton. This paper investigated the effects of sunlight on an essential chemical found in our body: folate or folic acid (one of the B vitamins). Folate is an essential nutrient for DNA synthesis. Since cells reproduce at a fast pace during pregnancy (and hence, there is a lot of DNA replication), the highest levels of folate are needed during pregnancy. Folate deficiencies during pregnancy can lead to anemia in the mother and malformations of the nervous system (neural tube defects in particular), gastrointestinal system, aorta, kidney, and skeletal system in the fetus. There is also a high rate of miscarriages. In addition, folate deficiency has been linked to spermatogenesis defects (inability to form sperm) in mice and rats (Mathur et al., 1977), and anti-folate agents are being investigated as a form of male contraceptive (Cosentino et al., 1990). Branda & Eaton’s paper measured the folate concentration in two human test groups. The results are shown in Figure 3. One group (called “patients”) was exposed to UV-light, while “normals” were not so exposed. Figure 3. Levels of blood folate in people exposed and not exposed to UV light. Question 12. Based on Branda and Eaton’s results (Figure 3), what is the apparent effect of UV light exposure on blood folate levels? Folate was isolated from blood and placed in a test tube. Half of the test tubes were exposed to UV light for 1 hour. The folate concentration in the samples was measured. The results are indicated in Table 1. Table 1. Folate concentrations in four samples of human plasma before and after a 1 hr exposure to UV light in vitro. Patients were exposed to UV light for at least 9 hours every day for 3 months. The difference between the two groups was statistically significant (P< 0.005). Brackets represent the standard error of the mean. Source: Figure 1 from Branda, R.F., and Eaton, J.W.(1978). Skin color and nutrient photolysis: An evolutionary hypothesis. Science 201: 625–626. Reprinted wih permission from AAAS. This figure and Table 1 may be used for non-commercial and classroom purposes only. Any other uses require the prior written permission from AAAS. Source: Table 1 from Branda, R.F., and Eaton, J.W.(1978). Skin color and nutrient photolysis: An evolutionary hypothesis. Science 201: 625–626. Reprinted with permission from AAAS. “The Evolution of Human Skin Color” by Annie Prud’homme-Généreux Page 6
The Evolution of Human Skin Color Part I – Skin Cancer - Annie  - page 7
NATIONAL CENTER FOR CASE STUDY TEACHING IN SCIENCE Question 13. What is the apparent effect of UV light on folate levels in these test tubes? Folate levels in humans are determined by two things: (1) dietary intake and (2) destruction through alcohol consumption or ultraviolet skin exposure. Questions 14. 15. 16. 17. How is folate linked to natural selection? All other things being equal, which skin tone would you expect to be correlated with higher levels of folate? Based on this new information, revise your hypothesis to explain the evolution of human skin color. What would happen to the reproductive success of: a. A light-skinned person living in the tropics? b. A light-skinned person living in the polar region? c. A dark-skinned person living in the tropics? d. A dark-skinned person living in the polar region? 18. Predict the skin tones expected at different latitudes, taking folate needs into consideration. Use the world map (Figure 4) to indicate the skin tone expected at each latitude (shade the areas where populations are darkly pigmented). Figure 4. Map of the world. Source: http://commons.wikimedia.org/wiki/File:World_map_blank_black_lines_4500px_monochrome.png, CC BY-SA 3.0. 19. Can folate explain the variation and distribution of light- and dark-skinned individuals around the world? “The Evolution of Human Skin Color” by Annie Prud’homme-Généreux Page 7
The Evolution of Human Skin Color Part I – Skin Cancer - Annie  - page 8
NATIONAL CENTER FOR CASE STUDY TEACHING IN SCIENCE Part VI – Vitamin D: Still Another Way of Looking at It Folate can explain why dark skin evolved, but it cannot account for the evolution of light skin. Another factor must be at play. Vitamin D 3 is essential for normal growth, calcium absorption, and skeletal development. It is particularly important in maintaining and repairing healthy bones and teeth. Its role in calcium absorption makes it essential in maintaining a healthy heart, blood clotting, a stable nervous system, and an effective immune system. Deficiencies manifest themselves as rickets (softening of the bones), osteoporosis, and osteomalacia. It can lead to death, immobilization, or deformities. Women have a higher need for this nutrient during pregnancy and lactation due to their need to absorb calcium to build the fetal skeleton. Humans can obtain vitamin D 3 by one of two means. They can consume it in certain foods (fish liver oil and to a lesser extent, egg yolk). Alternatively, skin cells have the ability to synthesize it from a cholesterol-like precursor. However, this process requires the energy of UV radiation. Theoretical research on the dose of ultraviolet radiation required to produce vitamin D 3 suggests that for moderately to darkly pigmented individuals (Figure 5): • There is enough sunlight reaching the tropics (approximately 5° north of the Tropic of Cancer to approximately 5° south of the Tropic of Capricorn) to meet all of a human’s requirement for vitamin D 3 throughout all months of the year. This is indicated by the dotted area on the map. Note: Vitamin D 3 is not produced to toxic levels when high quantities of sunlight are present. • In the area indicated by narrowly-spaced obliques, there is not enough ultraviolet light to synthesize vitamin D 3 in human skin for at least 1 month of the year; • In the area indicated by widely-spaced obliques, there is not enough UV light for the skin to synthesize vitamin D 3 in any month of the year Figure 5. Amount of UV light available to synthesize recommended levels of vitamin D for a moderately to darkly pigmented person at various locations around the world. Source: reprinted from The Journal of Human Evolution 39(1), Jablonski, N.G., and G. Chaplin, The Evolution of human skin coloration, pp. 57–106, Figure 2, copyright (2000), with permission from Elsevier. http://www.sciencedirect.com/science/journal/00472484. “The Evolution of Human Skin Color” by Annie Prud’homme-Généreux Page 8
The Evolution of Human Skin Color Part I – Skin Cancer - Annie  - page 9
NATIONAL CENTER FOR CASE STUDY TEACHING IN SCIENCE Questions 20. How is vitamin D linked to natural selection? 21. Which skin tone allows someone to maintain the recommended level of vitamin D? 22. Based on this new information, revise your hypothesis to explain the evolution of the variation and distribution of human skin color. 23. Taking only vitamin D into consideration, what would happen to the reproductive success of: a. A light-skinned person living in the tropics? b. A light-skinned person living in the polar region? c. A dark-skinned person living in the tropics? d. A dark-skinned person living in the polar region? 24. Predict the skin tones expected at different latitudes, taking only vitamin D needs into consideration. Use the world map (Figure 6) to indicate the skin tone expected at each latitude (shade a region to represent pigmented skin in that population). Figure 6. Map of the world. Source: http://commons.wikimedia.org/wiki/File:World_map_blank_black_lines_4500px_monochrome.png, CC BY-SA 3.0. 25. Can vitamin D alone explain the current world distribution of skin color? Evolution by natural selection is a process of compromise in which costs are minimized and benefits are maximized. Both light and dark skins have costs and benefits. As you are probably now realizing, adopting one level of pigmentation has trade-offs. “The Evolution of Human Skin Color” by Annie Prud’homme-Généreux Page 9
The Evolution of Human Skin Color Part I – Skin Cancer - Annie  - page 10
NATIONAL CENTER FOR CASE STUDY TEACHING IN SCIENCE 26. Using principles of natural selection, predict the skin tone expected at different latitudes, taking ultraviolet exposure, vitamin D, and folate needs into consideration. Use the map (Figure 7) to indicate skin tone patterns at different latitudes (shade regions where populations are expected to be darkly pigmented). Figure 7. Map of the world. Source: http://commons.wikimedia.org/wiki/File:World_map_blank_black_lines_4500px_monochrome.png, CC BY-SA 3.0. 27. Are UV light, vitamin D and folate needs sufficient to explain the current world distribution of skin color? 28. How might you explain that Inuits, living at northern latitudes, are relatively dark-skinned (much more so than expected for their latitude)? Propose a hypothesis. 29. Conversely, Northern Europeans are slightly lighter-skinned than expected for their latitude. Propose a hypothesis to explain this observation. “The Evolution of Human Skin Color” by Annie Prud’homme-Généreux Page 10
You're reading the first 10 out of 13 pages of this docs, please download or login to readmore.

People are reading about...